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Microscopic and macroscopic simulations for femtosecond-lasematter interaction
by cubic interpolated propagation method

Yoshiaki Kondoh, Takashi Yabe Jun Maehara, Takashi Nakamura, and Youichi Ogata
Department of Mechanical Engineering and Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku,
Tokyo, 152-8552, Japan
(Received 19 February 2003; published 31 December 2003

We performed 1.5-dimensional simulation for the Fokker-Planck equation using the@lie-interpolated
propagation/constrained interpolation profilrethod to investigate femtosecond-laser heating and transport
processes. We found that the heat flux in the solid part approaches the Spitzethdary on quite a short
time scalew,t<50, and thus the subsequent evaporation process can be analyzed by classical thermal con-
duction. On the basis of this result, we performed a hydrodynamic simulation using the CIP method with
classical thermal conduction in order to investigate the long time behavior of the evaporation process. The
experimental ablation depth was replicated very well, showing that even femtosecond pulse laser processing
can be satisfactorily described by classical heat conduction. Since the damage size is shown to be much larger
than laser-spot size even in such an ultrashort-pulse experiment, we must use the fluence estimated by the
damage size, which is twice as large as the laser spot, to correctly replicate the experiments.
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[. INTRODUCTION flux and thus the particle code fails to accurately calculate
the transport process.

Recently, there has been a growing interest in As an alternative to the particle method, one of the au-
femtosecond-picosecond short-pulse laser experiniér®s  thors proposed to apply the C[B—6] method to advection
In such experiments by femtosecond-pulse lasers, the abl@rocess in six-dimensional phase spg&kwritten as
tion depth was 10-100 times larger than the skin depth
which is on the order of nanometers. Furthermore, the abla- of d
tion depth increases in accordance with laser intensity, and EJF(U' 9x
this implies that some energy transport must take place.

We have had no such simulation on how the energy i%/vhereF is the force andm the mass. Since the CIP can

transpprted on very short t'm.e scales and how the .ablat'oaescribe the advection process accurately even with coarse
depth is related to the dynamics on the hydrodynamic level

The purpose of this paper is to clarify the mechanisms irgrid, it enables us to directly solve six-dimensional phase
revigusFI) reported eg sriments with the aid of microscopicoPa e in an Eulerian grid system. Actually, Landau damping
b y rep P Pi%as been accurately calculated even with ten grids in the

[ﬂagdarﬂgﬁ;ggﬁgﬁ ;ﬁé?ﬂlﬁz?nélgﬁgnng tr;ﬁf%m(;'mi%pﬂate%hole velocity spacg3]. Furthermore, exact particle conser-
propag P P vation is guaranteed. This numerical technique was used to

[4-8] investigate fast ignition for inertial confinement fusigt0].
In this paper, we shall extend this algorithm to the
Fokker-Planck equation
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1. NUMERICAL TECHNIQUE FOR MICROSCOPIC

SIMULATION
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Particle codes have been intensively used for analyzing E+
instabilities and laser-matter interaction processes because of
the low computational cost and low memory requirements in .
multidimensional calculations. However, it has been rarel))NIth

used for energy transport processes because of inaccuracy irE
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the distribution functionf except for asf algorithm that _f) __
combines particle codes with grid codgd. For example, At/ on
the heat flux is calculated by=f(mu®/2)f(4mwu?)du and

hence the integral kernel dependswon therefore main con-  \yhere
tribution to this flux comes from electrons at /5u,;, for a

Maxwell distribution f =f,exp(—u?/2u3), whereuy, is the 7622
thermal velocity. Since f/fy=exp(—5/2)=0.08 at u Y=477(—) InA,
~ \/Euth only a small number of particles contribute to this m
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G(u)=J fs(U)Vdu, O O
o0
x=(x,y,2), U=(U,,U,,U,), and u=(u,,u,,u,) are the P
ion and electron velocity, respective=u—U is the rela- E : E
tive velocity. fg(U) is the ion distribution function, anflin ’ : i O
Eq. (2) is the electron distribution function. He@(U) and (b)

H(U) are called the Rosenbluth potentidlsl], Z the ion
chargegthe electron charge, I the Coulomb logarithmiy
the ion mass, anth the electron mass.

This equation is put into nondimensional form by intro-
ducing the normalizing quantities such as the inverse plasma
frequencyw,, * = (m¢/4me’n,)*? for time, the Debye length
\p= (kg Tol4me®ny)Y? for length scale, the electron thermal
velocity uy=(kgTo/my)¥? for velocity and E,

=(kgTo/enp) for electric field. Then we finally get (c) (d) —
of J J FIG. 1. The principle of the CIP metho¢h) Solid line is initial
ot u X f—|E- U f profile and dashed line is an exact solution after advection, whose

solution is(b) at discretized points.c) When (b) is linearly inter-
92 polated, numerical diffusion appeafd) In the CIP, spatial deriva-

= — —(Af)+ = — (Bf , 2’ . e . . .
% &uﬂ( ) 2 = auﬂﬁuv( ), (2) tive also propagates and the profile inside a grid cell is retrieved.
Yng oH Yn, d°G dashed line in the continuous representation. At this time, the
= wpuf’h o, = wputsh u,au,’ solution at the grid points is denoted by circles and is the

same as the exact solution. However, if we eliminate the

where all the variables are now normalized although we uséashed line as shown in Fig(H, then information concern-
the same notation, for example,in Eq (2’) Corresponds to Ing the prOfile inside the grld cell has been lost. So it is
u/u, in Eq. (2), andH andG in Eq. (2') representu,,/n,  hatural to have a profile like that shown by the solid line in
and G/(ngUyp,) in Eq. (2). Fig. 1(c). Thus, numerical diffusion arises when we construct
Let us now describe the numerical technique briefly. Thethe profile by linear interpolation even with the exact solu-

one-dimensional form of the advection equation is given bytion as shown in Fig. (t). This process is called the first-
order upwind scheme. On the other hand, if we use a qua-

of of dratic polynomial for interpolation, it suffers from overshoot.
ot TUax =0 3 This process is the Lax-Wendroff scheme.

What made this solution worse? The reason is we neglect
and Eq.(1) is merely the six-dimensional extension of this the behavior of the solution inside grid cell and merely take
equation. In addition, the Vlasov or the Fokker-Planck equacare of the smoothness of the solution. From this point of
tion has an important feature in that the advection velocity irview, we understand that a method incorporating the real
each direction does not depend on the variable in the sansolution into the profile within a grid cell is an important
direction. For example, the advection spegdn x direction  subject. We propose to approximate the profile as shown be-
does not depend ax and the advection spe&q in velocity low. Let us differentiate Eq(3) with spatial variablex, then
space does not depend ap in Egs.(1) and(2). In such a we get
situation, the CIP method which will be used here has an
interesting feature that it guarantees exact mass conservation.

Before proceeding further, let us explain the one- J9 ~dJg  du
dimensional CIP scheme. Although nature operates in an es- YT T XY “)
sentially continuous world, a discretization process is un-
avoidable in order to implement numerical simulations. The
primary goal of any numerical algorithm will be to retrieve whereg stands for the spatial derivative f§f3f/dx. In the
the lost information inside the grid cell between these digi-simplest case where the velocityis constant, Eq(4) coin-
tized points. The CIP method proposed by one of the authorsides with Eq.(3) and represents the propagation of the spa-
tries to construct a solution inside the grid cell close enoughial derivative with a velocityu. By this equation, we can
to this real solution of the given equation with some con-trace the time evolution dfandg on the basis of Eq.3). If
straints. We here explain its strategy by using an advectiog is predicted after propagation as shown by the arrows in
equation(3). Fig. 1(d), the profile after one step is limited to a specific
When the velocity is constant, the solution of E8).rep-  profile. It is easy to imagine that by this constraint, the solu-
resents the simple translational motion of a wave with veloction becomes much closer to the initial profile which is the
ity u. The initial profile[solid line of Fig. 1a)] moves as the real solution. Most importantly, the solution thus created
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gives a profile consistent with E43) even inside the grid locity (uy,u,), we shall use directional splitting as follows.
cell. Importance of this constraint has been demonstrated in At first, the movement withy,,0) and then with (@) are

previous papef6]. performed by
If two values off andg are given at two grid points, the “n N
profile between these points can be interpolated by a cubic fii=L0Ofij, (12)
polynomial -
firt=L(y)T], (13
Fi(x)=a; X3+ b X2+ g X+f;, (5)

where L(\) is an operator of the one-dimensional CIP

whereX=x—x;. In order to extend the scheme to multidi- scheme which gives the solution of the equation

mensions later in this section, we introdugg = df/dx in of of

thex direction andb, f=gf/dy in they direction instead of. ot Ty =0 (14)
Thus, the profile at then(+ 1)th step can be obtained shift-

ing the profile by uAt as f{‘+1=Fi(xi—uAt),axf{‘+l The solution of Eq(12) is given by Eqs(6) and(7) and Eg.

=dF;(x;—uAt)/dx: (13) is also given by Eq96) and(7) simply replacingk by y.
In addition, the CIP method needs information on the spatial
1 l=a;£3+ b2+ 0, f e+ 17, (6)  derivatives. Unfortunately, in calculating EG.3), the spatial
derivative in they direction,&ﬁ{] , IS unknown, because the

i1 =3a,8+2biE+ g, 0], (7)  solution of Eq.(12) gives only 3,ff} according to Eq(7).
Therefore, some method is required to estimgf} from

where¢=—u;At and the superscriptri” indicates the time éyf{} . Let us introduce an operat&rto represent this proce-
ure.

step. Thus the value and its derivative at the next time ste

n+1 are explicitly given. The coefficients andb; are de- . .

termined so that the interpolation function and its first de- In (zrcrigr )t\o ;:ar'%.thhe procedtjhre, CV\IIE furlthtgr mt:(o;luc;e the
rivative coincide with the given value and derivative on theOPerato (\,AQ) which means the 1 soiution o 44
two grid points at step is given by Eqs(6) and(7) after the time interval\t. There-

fore the solution procedure in Eq§l2) and (13) can be

Fix)=f0,  (9F, 10X)ey = 31", symbolically written as
I in fn
i i
Fi(xiup):finup! (aFl /&X)X:Xiu’):&Xfinup, (8) ( X...ir}) :C(X,At)( &an) y (15)
and this equation leads to (9y~f~inj = SOy, AD (3D 3, 1), (16)
a = (Ocf+ o)A+ 2(F7 =T /AT, (9) ( fn+1 ) n
ij 1)
=C(y.At)( ~ ) 17
bi= — (20,1 o1y ) AX —3(F"— £, )IAXE.  (10) ayfiy oyt
Here AXx;=xXy,,—X and iup=i+sgn(-u;At), where I =Sy, x, A (7, ay ). (18

sgnfw) means the sign ofw.”

The CIP scheme can explicitly construct the cubic poly-
nomial while the conventional spline method needs to use J 9
matrix solutions for interpolation. Mathematical analysis has 51 (9pf) =~ ﬁ(uxﬂxf) (19
shown that the CIP can produce an accurate solution even for
a wavelength of two grid cell§6,12] with a computation which is the spatial derivative of E¢14) in the 8 direction.
time faster than the spline method or other higher-ordealthough the advection equation must be solved very accu-
schemes. rately by the CIP metho@(\,At), the evolution of the spa-

It is not economical to straightforwardly extend this tech-tial derivative in other direction is not so important in such a
nique to six dimensions because of the complexity of theprocess. Therefore we can adopt a lower-order finite differ-
six-dimensional cubic polynomial. Nakamura and YdB¢ ence scheme for this purpose. In the previous paper, we
proposed a simple scheme to extend the CIP to six dimeradopted the centered finite difference to EtP). Then Eq.
sions by employing a directional splitting technique. We(16) is explicitly written as
shall briefly explain the strategy in the two-dimensional case:

The operatoiS(\, 8,At) gives the solution of the equation

Tl =0y Fl = At(Uy 41057 11— Uy j-10xF] 1) /2AY.
of of of (20
—+Uy—+u,—=0, (11 o
ot X ay In the same way, Eq18) is given by
where u, and u, are the velocities inx andy directions, &J{}“zﬁﬁ{} —At(uy,iﬂyj&ff{‘ﬂ,j—uy,i_lyjaﬁ{‘_lyj)/ZAx.
respectively. Instead of following the trajectory with the ve- (21
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FIG. 2. (a) TemperatureT and heat flowQ distribution atw,t ~ flux reaches a maximum value at the boundary of the high
=60, (b) 100. temperature layer. Figure 3 shows the relation between the
heat flux and the inverse temperature gradient normalized by
This scheme has been proved to guarantee the exact constte local collision mean free patty,,=uj/n, whereur and
vation of particle numbef3]. n are the thermal velocity and density at each local point,
In applying this fractional step technique to the Fokker-respectively. The circles correspond to the calculation result
Planck equation, we used the second-order splitting schens w,t=60, and the squares af,t=100.
as This result is similar to that in Ref13]. The system size
in Ref. [13] is 64X34.7\p with a spatial grid size of
f*(x,u)=f"(x—uAt/2,u), Ax/\Np=34.71 and 32 velocity grids with a grid size of

Au/uy,=0.2.
F* (x,u)=F* (x,u+ EAL), "

fPHL(x,u) = f** (x—uAt/2,u). IV. FEMTOSECOND-LASER INTERACTION PROCESS

Since we confirmed that the present scheme can replicate
lII. NONLOCAL HEAT FLOW the previous result on nonlocal heat flow, we shall now apply

Before applying the present scheme to the femtosecondt to laser-matter interaction. Let us consider a system with a
niform-temperature region initially with a high-density

laser—matter interaction processes, we shall check the acc Ayer placed on the left and a low-density layer on the right.
racy of the method by comparing it with the previous calcu-—- =~ = o0 S Tincident from the right and ab-

lation for nonlocal heat floWl13]. In the previous paper, Bell
et al. used the Fokker-Planck equation in one-space and twa sorbed at the sharp transition layer. We limit the calculation
to one-space dimension and two-velocity spaces.

velocity dimensions coupled with the Poisson equation. .
Bell et al. numerically solved those equations by expand—d Thte syéfterln size '3 tlr?ﬁ? mdthe )ftdlrect|on| The T'gh'
ing f into Legendre polynomials in casup to eight terms. In ensity ( t) dayer an te”ow tﬁnSIIy(OTé)f p?jsthm; %yer
the present calculation, however, we directly solve the equa g2re connected exponentially with a layer ot wi 8
tion in an Eulerian grid system. We assume that_ the initial electron distributifgnis Max-
We used a similar condition in which the plasma is ini—We”'an_’ haV|r_1g “”_'fom"_' temperature G.-'a' T_he num_ber of
tially uniform in density and temperature gradients are im_numerlcal grid pomts IS 120. in thg dlrect|on,. 29 in the
posed. The system size is 20QQdescribed by 120 spatial range[—4uth,_4uth] n th_e Ux _d|rect|on, and 17 in the range
grid points, where\; is the Debye length at, andT,. The __?'rl]'lthlélluth] ”} ”r‘]e Uy d'reCt'O”a by the electic i
velocity space is uniformly divided with 32 grids in the € laser g t represented by the e_ec_tn(_: et
[ =Epsin(wt),w=0.5w,] parallel to thex axis is imposed

range[ — 6.4u,,,6.4u,,] in the u, direction and 16 grids in i .
the rangd — 2.9u;,,2.9u;,] in the u, direction. Although we over the region 1X from the critical surface of the plasma,
' y u\g/hose density is 5/, and exponentially decays in this re-

used such coarse grid points in velocity space, the previo
paper[3] demonstrated the accuracy of the scheme even Wltgmn We set the collision frequency at the thermal velocity
Ug, given by T, to be v/w,=0.01.[This corresponds to the

such a grid.
The high temperature region is placed over 40 grid p0|nt§3<3lr<3ll’m9'ﬂ‘—‘fSno—1020 cm ® and kgTo=1 keV when the

on the left side with a temperaturd € 0.4T,) four times  electron-ion collision frequency is estimated by noY/ug,

larger than the low temperature lay&F<0.1T,), and these ~Which appears in Eq2).] Since we set the initial tempera-

two layers are connected exponentially. Figure 2 shows th&ire to be 0.I,, collision frequency is initially v+/w,

time evolution of the temperature and heat-flux distributions = noY/uTa)p 0.3 if the thermal velocity at this tempera-
The temperature gradient spreads spatially and the heaire is used.

066408-4



MICROSCOPIC AND MACROSCOPIC SIMULATIONS FR. .. PHYSICAL REVIEW E 68, 066408 (2003

The electric field is solved by coupling the Maxwell equa-
tion gE/dt=J for the high-density region with the Poisson
equationV-E=q for low-density region, whergy is the (@
charge. These two solutions are connected at the boundary
near the critical point. Accelerated electrons ejected from the
laser-heated region must be neutralized by some return cur-
rent and therefore the Poisson equation is suitable for this
area in order to accurately calculate the virtual cathode.

In the high-density layer, however, the motion becomes
fluidlike in a time-averaged sense and, as a result, fluidlike
motion becomes important there. Oscillations related to the
Debye length are not important but the collision process is. If
the plasma oscillation must be accurately solved in this re- (b)
gion, the spatial grid size must be smaller than the Debye
length and we will not be able to use a large system sufficient U N,
for resolving thermal transport. Therefore, Maxwell’'s equa-
tions used to calculate the electric field on average via mac-
roscopic value are suitable in this area. For this reason, we
solved electric field separately in the two regions by two
methods. Therefore, the electric fields are connected as

: High e

u, fuy,

N =T SEET IS
T ey

N s density]

'80 60 40 20 0 20 4060 80
x/'hp

A OO L o - 0w s
e e A Aadas aaad

'80 80 40 20 0 20 40 60 80
x/khp

E=Epoi-(1- )+ Epae ™7,

poi’
©

whereE,; represents the electric field solved by the Poisson
equation V-E,,=q and Ep,y by the Maxwell equation e [t
IE maxl It=1J.

Figure 4 shows the electron motionn-u, phase space
at the time of(a) 50, (b) 75, and(c) 100 w,jl after laser
irradiation which lasted #wgl. Although we did not use e ED M 20020 40 60 80
particles for the calculation, we here employed virtual par- x/hp
ticles only for the purpose of visualization of the phase tra-
jectories of the particles. These particles were initially placed FIG. 4. Electron trajectories iR—u, phase space ai,t= (a)
at an arbitrary position in velocity space. Then we calculatedbO, (b) 75, and(c) 100. Density profile is shown by the solid line in
how it moved under the influence of the calculated electrid@ -
field with a leapfrog scheme by the equations

R R =T SRR RS
AR Aaasaaas e o M

Open circles and the solid line in Figgapand §b) show
the temperature and heat-flux distributionsegt=50,100,
respectively. The relation between heat flurormalized by
the local free streaming fluQ;,.=nv+T) and temperature
dxp(t)/dt=up(t), (23 gradient(normalized by the collision mean free pakh,e
estimated at each local pointxf at w,t=50(c), 100(d) are
whereE(xy(t),t) is estimated at the particle location by lin- plotted in Fig. 5 and compared with the theoretical curve
ear interpolation from the values on the nearby grid pointsbased on the Spitzer-ifa (S-H) theory q=—«VT [14].
The number of particles used here is 2040. The calculated heat flux in the high-density region remains
Figure 4 is only a part of the whole system. The negativealong the theoretical curvésolid line), whereas it departs
velocity part of the electron distribution is moving towards seriously on the vacuum side.
the high-density side, while positive velocity part is moving  Even atwpt=>50 in Fig. Hc), the flux in the high-density
towards the low-density side from the surface. In Fig)4  region already reached the S-H theory while it is not yet in
the electrons in the heated region are accelerated and mo¥geady state in the low-density region. It is important to note
out far away from the surface at the beginning. Next, electhat such a classical Fourier law is quickly established. It is
trons in the low-velocity region gradually perform circular interesting to note that this behavior is different from the
motion near the heated surface. This is confirmed in Figstesult in the preceding section. In such a nonlocal heat flow,
4(b) and 4c), where particles initially having positive veloci- the heat flux is always detached from the classical law as in
ties changed their direction to negative velocity>at0  Fig. 3. We have not yet come to a conclusion to explain this
~20Np . This structure is maintained up to the end of thedifference but the virtual cathode and returning electrons
calculation atwpt=100. Thus the electrons streaming into may play some role in establishing the classical Fourier law.
vacuum are reflected back to the high-density region by the In order to show the effect of the virtual cathode, we
virtual cathode formed there, and contribute to the heat flusperformed another simulation in which self-consistent elec-
in the high-density region. tric fields are not used to accelerate the electrons but only the

duy(t)/dt=E(xy(t),1), (22
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FIG. 5. Temperaturdopen circleg and heat-flux(solid line)
distribution atwyt= (a) 50, (b) 100. Heat fluxQ vs inverse tem-
perature gradient ab,t=50 (c), 100 (d). The theoretical curve
based on the Spitzer-ta theory is plotted by the solid line. Log
base is 10.

laser field is imposed. Figure 6 shows the comparison of

trajectories of electrons ix—u, phase space ab,t=50
with and without self-consistent fields. Compared with Fig.
6(b), electrons in Fig. @) are relatively confined in the re-

gion where the laser field was imposed because of the self-

induced electric field. If this field is absent, a shocklike struc-
ture propagates with constant velocity in the entire velocity

space of the electrons because electrons are moving with

initially accelerated velocities.

Figure 7 shows the electric field distribution in the same
case as in Fig. 6. The initial laser is imposed Bs
=Egsin(wt) (added in the regiox=0~—17). The influ-

PHYSICAL REVIEW E 68, 066408 (2003

3
@ =
X
s
o 3
3
-3 s N N
-100 -50 0 50 100
x/hp

FIG. 6. Electron trajectories iR—u, phase space ab,t= 50,
(a) with and (b) without the self-consistent fields.

back the electrons in the negative direction. THhisO region
should have acted as a virtual cathode. Figuil®) s the
result without the self-consistent field but the electric fields
are calculated from the resultant space charge. A very large
electric field appeared because there is no self-consistent
electric field to prevent charge separation.

Figure 8 shows the dependence of heat flux on the laser
intensity E.,J =Asin(wt), (&) A=Ey/2, (b) A=Ey, (¢) A
=2E,, and (d) A=3E]. It is clear that the distance to
which heat is transported becomes longer by increasing the
laser intensity although the initially heated region is the

0.04
0.03t
0.02¢
0.01¢
0]
-0.01¢
-0.02¢
-0.03}

-0.04
8

060 -40 20 0 20 40 60 80
x/hp

0-60 -40-20 0 20 40 60 80
x/Xp
FIG. 7. Electric field distribution for the same condition as in

ence of the self-consistent electric field can be seen in Figrig. 6 atw,t=50 (a) with and (b) without self-consistent electric

7(a). For x>0 there exists a region witk>0 which pulls

field.
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0.03 e
ot A=3E,, 0: A=2E,, x: A=E,
002} |—: _,'-.‘ _
. 001} Bt :I' "“".“ ] A A=Ey/2, ¢! A=E, (small lattice) T
% .\
o 001} RN ] 3 ;‘%“ﬁaﬁﬁmﬁm
"t\l & 2 %% 0 % oy
0.02} Y ] S .Y
20,03 bttt s B o4l :
4007300~ 0T 500 400 = e
x/hp 6L % .
FIG. 8. The heat fluQ as functions ok at w,t=100 for vari- 12 3 4 5 6 7
ous laser fieldE., =Asin(wt), (8) A=Ey/2, (b) A=Ey, (c) A log(T/' V T/2,.)

FIG. 10. The heat flux vs gradient scale for the various laser
. . . . . field at w,t=100 (A=Ey/2, Eq, 2E,,) and w,t=50 (A=3E,).
Same' This hgat-penetratlon Iength. is shown in F_'g' ,9 fo':l'he calcuplation Wiﬁh fineO mesﬁ is adod)ed for= Ep0 in Wh(iCh spe?t)ial
various laser field&.,, where “d/Ap"is the length which is  esh size is reduced to 1/4, but the plot issgt="50. The Spitzer-
estimated by the point whel®@=—4.15< 102 which cor-  Hzm theory is shown by the solid line.
responds to the edge of the initial electric field in the case of
Fig. 8a).

If this length is simply calculated from the distance that
electrons would move with velocity gained from the laser

increased. Therefor€/Qs,. remains constant and shows
unified behavior which does not depend on laser field. More-
over, the calculation with reduced mesh size also agrees with

field , the distance should be proportional {& but Fig. 9 he ¢oarse mesh result and this confirms the accuracy of the
shows somewhat different behavior. present calculations.

Although the heat-penetration length increases with in-
creasing laser intensity, this tendency does not explain the
experimental results as will be shown later in the following V. MACROSCOPIC SIMULATION
section[1]. In order to explain the experimental results, we . L . .
need a long time scale hydrodynamic simulations. The most From the results by microscopic simulations in the pre-

important conclusion drawn from this microscopic simula- ¢€ding section, the classical thermal conduction is shown to

tion is that the classical heat conduction is established eveple quickly established. However, the calculation in the pre-

at w,t~50 which is very short compared with the laser pulseCecjlng section is not long enough to compare the ablation

duration in the actual system. This proves that the classicaﬂepth with the experiments. Thus we need a simulation with

thermal conduction through the electron-collision interaction® much longer time scale. Fortunately, we know at present

takes place much earlier than expected that the classical thermal conduction is relevant for further
Figure 10 summarizes the results with the various Iase§!mulation and hence we are able to perform the purely clas-

intensities. We added another calculation result with the spasi'cal ﬂu'd. dynamic S|mqlat|9n W'thOUt any anomalies.
For this hydrodynamic simulation, we use the code-

tial mesh size reduced by a factor of 4 &= E,. The sys- : .
tem size is also reduced because the same number of mesi%gHAL based on the CIP method applied to hydrodynamic

s used. The S-H thery is Shown by he soid n fo com- (L2107, T code s beer used o vriove upes o lasey
parison. Because the denominator of heat flux in Fig. 10 i 9

free-streaming fluxQqo(=nu-T) estimated at each local 125 demonstrated its suitability in such calculatipdd5—

position which becomes large in accordance with heat flux17]' This code includes thermal conduction, viscosity, the

that also increases in proportion no-T when laser field is equation of state, elastic-plastic processes, surface tension,
and other physics.

At first, the simulation is applied to copper with a laser

150 : . pulse of 150 fs and a wavelength of 780 nm by setting the
. absorption rate to 30%. The laser pulse intensity is set to a
100 . Gaussian distribution in both space and time:
d/ip . r\2 t)2
50[ ] I=I0ex;{—(a) exr{— ;) ,
[ ]
wherel , is the peak value of the laser intensity. The penetra-

15 2

0.5 1 tion of the laser is given by the skin depth as
JALE,
FIG. 9. Heat penetration depth vs incident laser field. This | zi )‘_C
length is estimated by the poifi= —4.15x 10 3. m 47 N ¢’

066408-7



PHYSICAL REVIEW E 68, 066408 (2003

KONDOH et al.
250
= [o]
E 200} i
g ot}
% 150- i /-
8 /
§ 100F (i o
B 7
< 50t e ]
7
0 ?_i) =7
1 10° 10*

110nm N
Fluence [mJ/cm?}

FIG. 11. The crater structure obtained by fluid simulation at 10 ] )
ns after laser irradiation. In the simulation, the laser spot diameter is. F/G- 13. Ablation depth vs fluence. The open circles show the
80 um and laser energy i) 754 uJ, (b) 251 1J. (The size of simulation results with 8Qwm laser-spot diameter for laser energy

height and width in these figures is changed by 1:1:38@ for from 20 wJ to 754 uJ but the fluence was estimated by the damage
better visualization. size in Fig. 12, while the dashed line is the simulation result esti-

mated by laser-spot size. The squares with error bar are the experi-

where\ is the laser wave lengtle, the speed of light, and mental result$2].

the electric conductivity. Therefore, the depthis about 5
nm for copper and is negligibly small compared with the
crater depth observed in experiments.

Figure 11 shows two examples of crater shapes given b
the hydrodynamic simulation. The laser enters from th
right-hand side of the figure and irradiates the copper surfac
placed on the left-hand side. The laser energy in Fig. 1d)is
754 1J and(b) 251 nJ with the same laser-spot diameter
80 um. In Fig. 11, the depth and diameter of the craténe
ratio between the spatial scale height and width in the figur

is changed to 1:1.34410° in order to clearly show the cra- . . .
mated by the damage size for each simulation. The squares
;enr ddigtg anze ?S;)ué?[isslo nlrg ?gdalf?e%g :,s:rni(:ggzji]r;llt%r?mTheare the experimental results and the dashed line is the simu-
by P Y, o - ' lation result in which the fluence is estimated merely by the
crater stopped developing at this time. It is important to meaiaser-spot size. As is expected from Fig. 12, a large differ-
sure the size of the damaged area on the target surface, be: ) ) L9 T
cause the size of the damaaed area is used as a spot size RS appears depending on the definition of the fluence. As
estimate the laser fluence 31 the two experiments piven ir'lnq:ig' 13, the hydrodynamic simulation with purely classical
Figs. 13 and 142,18 P 9 thermal conduction and elastic processes can replicate the
gs. e : . . experimental results very well when the fluence is correctly
We have performed a number of simulations by Changm%stimated in the same way as the experiments
the flugnce and spot si;e. Figure 12 shows the da”?age. sizé These results can also be confirmed by ar;other similar
for various laser-spot sizes and thus the damage size is al-__ . R . e )
. experiment shown in Fig. 1§L8]. The simulation is for sil-
ways much larger than the laser-spot size. The error bar rep-=_" " )
he ch d by diff fl | ver with a 120-fs laser pulse and a wavelength of 780 nm by
resents the change caused by different fluence or laser energgmng the absorption rate to 10%. If we correctly estimate

with the same spot size. Although the damage size has bezﬂe fluence in the same wav as in Fia. 13. the simulation
widely believed to be the same as the laser-spot size under . vay 9- 1o
agrees well with the experimeft8].

such an ultrashort-pulse laser, both differ significantly as
shown in the figure. In the case of a laser-spot diameter of
0 um, for example, the damage size on the target surface is
50-180um which is twice as large as the laser-spot size.
herefore we must be careful in analyzing the experimental
results if the fluence is estimated by the damage size as in the
experiments of Refd2,18,19.
In Fig. 13, ablation depth is plotted against the laser flu-
nce. The open circles are simulation results in which the
aser-spot diameter is fixed to §om but the fluence is esti-

— 400 200
E 350} } —
B 300G E 250 F . [¢]
g £
£ 250} { & 200} ;
S 200 < ]
& 150k $ - § 1%0¢ ) ]
g 100} v 3 100} 0
[a] ¢ __.-- é
50 o ;__—" 50 r
) s L L L ) [}
%6460 80 100 120 140 160 nf o .
Laser spot diameter [ ptm] 10° 10° 10*

Fluence [mJ/cm?]
FIG. 12. Calculation results of damage diameter for various la-
ser spot diameter, where the fluence is changed from 113 to FIG. 14. Ablation depth vs effective fluence. The circles show
4 266 mJ/crh. The error bar indicates the change for different flu- the simulation results with 6p-m laser-spot diameter for laser en-
ence. For comparison, the dashed line, which represents the damagegy from 31.4uJ to 502.6.J but the fluence was estimated by the
size equal to the laser spot, is drawn. damage size. The squares represent the experimental rfgsjlts
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VI. SUMMARY Since the classical thermal conduction is realized so

quickly, subsequent hydrodynamic calculation has been done

.We performed simulations to analy;e exper!mental result?,n a purely classical manner and compared with the experi-
with a femtosecond laser both at microscopic and macro-

scopic levels. We solved the Fokker-Planck equation usin ments. The simulations have shown that the damage diam-

the CIP method for analvzing the interaction between Rter is much larger than the laser spot even in femtosecond-
yzing Raser experiments. Thus the ablation depth dependence on

fﬁ;i‘g;ﬂiﬁﬁ;ﬁgs? Lﬁ)ﬁizw?s'Z;R/z?:;:gig()p\;\zt;‘aggeéS:_rlgser fluence was correctly replicated only when the same
d y definition of the fluence was used both in experiments and

rian grid in one-space and two-velocity space dimensions. simulations
After the acceleration by the laser field, electrons are re- '
flected back by a virtual cathode and contribute to the energy

transport process. By this effect, the thermal flux quickly ACKNOWLEDGMENTS
reached the Fourier law form. Such behavior is different
from the previous result on non-local heat flow. The authors would like to thank Dr. James Koga at Japan

It is important to note that the classical transport theoryAtomic Research Institute and Professor Feng Xiao at Tokyo
(S-H theory is quickly established within a very short time Institute of Technology for their careful reading of the manu-
scale of the order ob,t=50. script and useful discussion.
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