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Microscopic and macroscopic simulations for femtosecond-laser–matter interaction
by cubic interpolated propagation method

Yoshiaki Kondoh, Takashi Yabe,* Jun Maehara, Takashi Nakamura, and Youichi Ogata
Department of Mechanical Engineering and Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku,

Tokyo, 152-8552, Japan
~Received 19 February 2003; published 31 December 2003!

We performed 1.5-dimensional simulation for the Fokker-Planck equation using the CIP~cubic-interpolated
propagation/constrained interpolation profile! method to investigate femtosecond-laser heating and transport
processes. We found that the heat flux in the solid part approaches the Spitzer-Ha¨rm theory on quite a short
time scalevpt,50, and thus the subsequent evaporation process can be analyzed by classical thermal con-
duction. On the basis of this result, we performed a hydrodynamic simulation using the CIP method with
classical thermal conduction in order to investigate the long time behavior of the evaporation process. The
experimental ablation depth was replicated very well, showing that even femtosecond pulse laser processing
can be satisfactorily described by classical heat conduction. Since the damage size is shown to be much larger
than laser-spot size even in such an ultrashort-pulse experiment, we must use the fluence estimated by the
damage size, which is twice as large as the laser spot, to correctly replicate the experiments.

DOI: 10.1103/PhysRevE.68.066408 PACS number~s!: 52.38.2r, 52.65.Ff
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I. INTRODUCTION

Recently, there has been a growing interest
femtosecond-picosecond short-pulse laser experiments@1,2#.
In such experiments by femtosecond-pulse lasers, the a
tion depth was 10–100 times larger than the skin de
which is on the order of nanometers. Furthermore, the a
tion depth increases in accordance with laser intensity,
this implies that some energy transport must take place.

We have had no such simulation on how the energy
transported on very short time scales and how the abla
depth is related to the dynamics on the hydrodynamic le
The purpose of this paper is to clarify the mechanisms
previously reported experiments with the aid of microsco
@3# and macroscopic simulations using the cubic-interpola
propagation/constrained interpolation profile~CIP! method
@4–8#.

II. NUMERICAL TECHNIQUE FOR MICROSCOPIC
SIMULATION

Particle codes have been intensively used for analyz
instabilities and laser-matter interaction processes becau
the low computational cost and low memory requirements
multidimensional calculations. However, it has been rar
used for energy transport processes because of inaccura
the distribution functionf except for ad f algorithm that
combines particle codes with grid codes@9#. For example,
the heat flux is calculated byq5*(mu3/2) f (4pu2)du and
hence the integral kernel depends onu5, therefore main con-
tribution to this flux comes from electrons atu'A5uth for a
Maxwell distribution f 5 f 0exp(2u2/2uth

2 ), whereuth is the
thermal velocity. Since f / f 05exp(25/2)50.08 at u
'A5uth only a small number of particles contribute to th
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flux and thus the particle code fails to accurately calcul
the transport process.

As an alternative to the particle method, one of the a
thors proposed to apply the CIP@4–6# method to advection
process in six-dimensional phase space@3# written as

] f

]t
1S u•

]

]xD f 1S F

m
•

]

]uD f 50, ~1!

where F is the force andm the mass. Since the CIP ca
describe the advection process accurately even with co
grid, it enables us to directly solve six-dimensional pha
space in an Eulerian grid system. Actually, Landau damp
has been accurately calculated even with ten grids in
whole velocity space@3#. Furthermore, exact particle conse
vation is guaranteed. This numerical technique was use
investigate fast ignition for inertial confinement fusion@10#.

In this paper, we shall extend this algorithm to th
Fokker-Planck equation
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where
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m D 2

ln L,

H~u!5
M1m

M E f s~U!

V
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G~u!5E f s~U!VdU,

x5(x,y,z), U5(Ux ,Uy ,Uz), and u5(ux ,uy ,uz) are the
ion and electron velocity, respectively.V[u2U is the rela-
tive velocity. f s(U) is the ion distribution function, andf in
Eq. ~2! is the electron distribution function. HereG(U) and
H(U) are called the Rosenbluth potentials@11#, Z the ion
charge,e the electron charge, lnL the Coulomb logarithm,M
the ion mass, andm the electron mass.

This equation is put into nondimensional form by intr
ducing the normalizing quantities such as the inverse pla
frequencywp

215(me/4pe2n0)1/2 for time, the Debye length
lD5(kBT0/4pe2n0)1/2 for length scale, the electron therm
velocity uth5(kBT0 /me)

1/2 for velocity, and E0
5(kBT0 /elD) for electric field. Then we finally get

] f

]t
1S u•

]

]xD f 2S E•
]

]uD f

52(
m

]

]um
~A f !1

1

2 (
m,n

]2

]um]un
~B f !, ~28!

A5
Yn0

vputh
3

]H

]um
, B5

Yn0

vputh
3

]2G

]un]um
,

where all the variables are now normalized although we
the same notation, for example,u in Eq. ~28! corresponds to
u/uth in Eq. ~2!, andH andG in Eq. ~28! representHuth /n0
andG/(n0uth) in Eq. ~2!.

Let us now describe the numerical technique briefly. T
one-dimensional form of the advection equation is given

] f

]t
1u

] f

]x
50 ~3!

and Eq.~1! is merely the six-dimensional extension of th
equation. In addition, the Vlasov or the Fokker-Planck eq
tion has an important feature in that the advection velocity
each direction does not depend on the variable in the s
direction. For example, the advection speedux in x direction
does not depend onx, and the advection speedEx in velocity
space does not depend onux in Eqs. ~1! and ~2!. In such a
situation, the CIP method which will be used here has
interesting feature that it guarantees exact mass conserva

Before proceeding further, let us explain the on
dimensional CIP scheme. Although nature operates in an
sentially continuous world, a discretization process is
avoidable in order to implement numerical simulations. T
primary goal of any numerical algorithm will be to retriev
the lost information inside the grid cell between these d
tized points. The CIP method proposed by one of the auth
tries to construct a solution inside the grid cell close enou
to this real solution of the given equation with some co
straints. We here explain its strategy by using an advec
equation~3!.

When the velocity is constant, the solution of Eq.~3! rep-
resents the simple translational motion of a wave with vel
ity u. The initial profile@solid line of Fig. 1~a!# moves as the
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dashed line in the continuous representation. At this time,
solution at the grid points is denoted by circles and is
same as the exact solution. However, if we eliminate
dashed line as shown in Fig. 1~b!, then information concern-
ing the profile inside the grid cell has been lost. So it
natural to have a profile like that shown by the solid line
Fig. 1~c!. Thus, numerical diffusion arises when we constru
the profile by linear interpolation even with the exact so
tion as shown in Fig. 1~c!. This process is called the first
order upwind scheme. On the other hand, if we use a q
dratic polynomial for interpolation, it suffers from overshoo
This process is the Lax-Wendroff scheme.

What made this solution worse? The reason is we neg
the behavior of the solution inside grid cell and merely ta
care of the smoothness of the solution. From this point
view, we understand that a method incorporating the r
solution into the profile within a grid cell is an importan
subject. We propose to approximate the profile as shown
low. Let us differentiate Eq.~3! with spatial variablex, then
we get

]g

]t
1u

]g

]x
52

]u

]x
g, ~4!

whereg stands for the spatial derivative off, ] f /]x. In the
simplest case where the velocityu is constant, Eq.~4! coin-
cides with Eq.~3! and represents the propagation of the s
tial derivative with a velocityu. By this equation, we can
trace the time evolution off andg on the basis of Eq.~3!. If
g is predicted after propagation as shown by the arrows
Fig. 1~d!, the profile after one step is limited to a specifi
profile. It is easy to imagine that by this constraint, the so
tion becomes much closer to the initial profile which is t
real solution. Most importantly, the solution thus creat

FIG. 1. The principle of the CIP method.~a! Solid line is initial
profile and dashed line is an exact solution after advection, wh
solution is~b! at discretized points.~c! When ~b! is linearly inter-
polated, numerical diffusion appears.~d! In the CIP, spatial deriva-
tive also propagates and the profile inside a grid cell is retrieve
8-2
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gives a profile consistent with Eq.~3! even inside the grid
cell. Importance of this constraint has been demonstrated
previous paper@6#.

If two values off andg are given at two grid points, the
profile between these points can be interpolated by a c
polynomial

Fi~x!5aiX
31biX

21giX1 f i , ~5!

whereX5x2xi . In order to extend the scheme to multid
mensions later in this section, we introduce]xf [] f /]x in
thex direction and]yf [] f /]y in they direction instead ofg.
Thus, the profile at the (n11)th step can be obtained shif
ing the profile by uDt as f i

n115Fi(xi2uDt),]xf i
n11

5dFi(xi2uDt)/dx:

f i
n115aij

31bij
21]xf i

nj1 f i
n , ~6!

]xf i
n1153aij

212bij1]xf i
n , ~7!

wherej[2uiDt and the superscript ‘‘n’’ indicates the time
step. Thus the value and its derivative at the next time s
n11 are explicitly given. The coefficientsai andbi are de-
termined so that the interpolation function and its first d
rivative coincide with the given value and derivative on t
two grid points at stepn,

Fi~xi !5 f i
n , ~]Fi /]x!x5xi

5]xf i
n ,

Fi~xiup!5 f iup
n , ~]Fi /]x!x5xiup

5]xf iup
n , ~8!

and this equation leads to

ai5~]xf i
n1]xf iup

n !/Dxi
212~ f i

n2 f iup
n !/Dxi

3 , ~9!

bi52~2]xf i
n1]xf iup

n !/Dxi23~ f i
n2 f iup

n !/Dxi
2 . ~10!

Here Dxi[xiup2xi and iup5 i 1sgn(2uiDt), where
sgn(w) means the sign of ‘‘w. ’’

The CIP scheme can explicitly construct the cubic po
nomial while the conventional spline method needs to
matrix solutions for interpolation. Mathematical analysis h
shown that the CIP can produce an accurate solution eve
a wavelength of two grid cells@6,12# with a computation
time faster than the spline method or other higher-or
schemes.

It is not economical to straightforwardly extend this tec
nique to six dimensions because of the complexity of
six-dimensional cubic polynomial. Nakamura and Yabe@3#
proposed a simple scheme to extend the CIP to six dim
sions by employing a directional splitting technique. W
shall briefly explain the strategy in the two-dimensional ca

] f

]t
1ux

] f

]x
1uy

] f

]y
50, ~11!

where ux and uy are the velocities inx and y directions,
respectively. Instead of following the trajectory with the v
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locity (ux ,uy), we shall use directional splitting as follows
At first, the movement with (ux,0) and then with (0,uy) are
performed by

f̃ i j
n 5L~x! f i j

n , ~12!

f i j
n115L~y! f̃ i j

n , ~13!

where L(l) is an operator of the one-dimensional C
scheme which gives the solution of the equation

] f

]t
1ul

] f

]l
50. ~14!

The solution of Eq.~12! is given by Eqs.~6! and~7! and Eq.
~13! is also given by Eqs.~6! and~7! simply replacingx by y.
In addition, the CIP method needs information on the spa
derivatives. Unfortunately, in calculating Eq.~13!, the spatial
derivative in they direction,]y f̃ i j

n , is unknown, because th

solution of Eq.~12! gives only ]x f̃ i j
n according to Eq.~7!.

Therefore, some method is required to estimate]y f̃ i j
n from

]yf i j
n . Let us introduce an operatorS to represent this proce

dure.
In order to clarify the procedure, we further introduce t

operatorC(l,Dt) which means the CIP solution of Eq.~14!
is given by Eqs.~6! and~7! after the time intervalDt. There-
fore the solution procedure in Eqs.~12! and ~13! can be
symbolically written as

S f̃ i j
n

]x f̃ i j
n D 5C~x,Dt !S f i j

n

]xf i j
n D , ~15!

]y f̃ i j
n 5S~x,y,Dt !~]xf i j

n ,]yf i j
n !, ~16!

S f i j
n11

]yf i j
n11D 5C~y,Dt !S f̃ i j

n

]y f̃ i j
n D , ~17!

]xf i j
n115S~y,x,Dt !~]x f̃ i j

n ,]y f̃ i j
n ! . ~18!

The operatorS(l,b,Dt) gives the solution of the equation

]

]t
~]b f !52

]

]b
~ul]l f ! ~19!

which is the spatial derivative of Eq.~14! in theb direction.
Although the advection equation must be solved very ac
rately by the CIP methodC(l,Dt), the evolution of the spa-
tial derivative in other direction is not so important in such
process. Therefore we can adopt a lower-order finite dif
ence scheme for this purpose. In the previous paper,
adopted the centered finite difference to Eq.~19!. Then Eq.
~16! is explicitly written as

]y f̃ i j
n 5]yf i j

n 2Dt~ux,i , j 11]xf i , j 11
n 2ux,i , j 21]xf i , j 21

n !/2Dy.
~20!

In the same way, Eq.~18! is given by

]xf i j
n115]x f̃ i j

n 2Dt~uy,i 11,j]y f̃ i 11,j
n 2uy,i 21,j]y f̃ i 21,j

n !/2Dx.
~21!
8-3
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This scheme has been proved to guarantee the exact co
vation of particle number@3#.

In applying this fractional step technique to the Fokk
Planck equation, we used the second-order splitting sch
as

f * ~x,u!5 f n~x2uDt/2,u!,

f ** ~x,u!5 f * ~x,u1EDt !,

f n11~x,u!5 f ** ~x2uDt/2,u!.

III. NONLOCAL HEAT FLOW

Before applying the present scheme to the femtoseco
laser–matter interaction processes, we shall check the a
racy of the method by comparing it with the previous calc
lation for nonlocal heat flow@13#. In the previous paper, Bel
et al.used the Fokker-Planck equation in one-space and t
velocity dimensions coupled with the Poisson equation.

Bell et al. numerically solved those equations by expan
ing f into Legendre polynomials in cosu up to eight terms. In
the present calculation, however, we directly solve the eq
tion in an Eulerian grid system.

We used a similar condition in which the plasma is in
tially uniform in density and temperature gradients are i
posed. The system size is 2000lD described by 120 spatia
grid points, wherelD is the Debye length atn0 andT0. The
velocity space is uniformly divided with 32 grids in th
range@26.4uth,6.4uth# in the ux direction and 16 grids in
the range@22.9uth,2.9uth# in theuy direction. Although we
used such coarse grid points in velocity space, the prev
paper@3# demonstrated the accuracy of the scheme even
such a grid.

The high temperature region is placed over 40 grid po
on the left side with a temperature (T50.4T0) four times
larger than the low temperature layer (T50.1T0), and these
two layers are connected exponentially. Figure 2 shows
time evolution of the temperature and heat-flux distributio

The temperature gradient spreads spatially and the

FIG. 2. ~a! TemperatureT and heat flowQ distribution atvpt
560, ~b! 100.
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flux reaches a maximum value at the boundary of the h
temperature layer. Figure 3 shows the relation between
heat flux and the inverse temperature gradient normalized
the local collision mean free pathl f re}uT

4/n, whereuT and
n are the thermal velocity and density at each local po
respectively. The circles correspond to the calculation re
at vpt560, and the squares atvpt5100.

This result is similar to that in Ref.@13#. The system size
in Ref. @13# is 64334.71lD with a spatial grid size of
Dx/lD534.71 and 32 velocity grids with a grid size o
Du/uth50.2.

IV. FEMTOSECOND-LASER INTERACTION PROCESS

Since we confirmed that the present scheme can repli
the previous result on nonlocal heat flow, we shall now ap
it to laser-matter interaction. Let us consider a system wit
uniform-temperature region initially with a high-densi
layer placed on the left and a low-density layer on the rig
The laser is assumed to be incident from the right and
sorbed at the sharp transition layer. We limit the calculat
to one-space dimension and two-velocity spaces.

The system size is 1000lD in the x direction. The high-
density (5n0) layer and the low-density (0.5n0) plasma layer
are connected exponentially with a layer of width 200lD .

We assume that the initial electron distributionf 0 is Max-
wellian, having uniform temperature 0.1T0. The number of
numerical grid points is 120 in thex direction, 29 in the
range@24uth,4uth# in the ux direction, and 17 in the range
@24uth,4uth# in the uy direction.

The laser light represented by the electric fieldEex

@5E0sin(vt),v50.5vp# parallel to thex axis is imposed
over the region 17lD from the critical surface of the plasma
whose density is 5/4n0, and exponentially decays in this re
gion. We set the collision frequency at the thermal veloc
uth given byT0 to ben/vp50.01. @This corresponds to the
parametersn051020 cm23 and kBT051 keV when the
electron-ion collision frequency is estimated byn5n0Y/uth

3

which appears in Eq.~2!.# Since we set the initial tempera
ture to be 0.1T0, collision frequency is initiallynT /vp

[n0Y/uT
3vp50.3 if the thermal velocityuT at this tempera-

ture is used.

FIG. 3. Heat fluxQ versus inverse temperature gradient atvpt
560(s),100(h). The vertical axis shows heat flux divided by fre
streaming limit,Qf re . The scale length of temperature gradient
normalized by collision mean free pathl f re .
8-4
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MICROSCOPIC AND MACROSCOPIC SIMULATIONS FOR . . . PHYSICAL REVIEW E 68, 066408 ~2003!
The electric field is solved by coupling the Maxwell equ
tion ]E/]t5J for the high-density region with the Poisso
equation“•E5q for low-density region, whereq is the
charge. These two solutions are connected at the boun
near the critical point. Accelerated electrons ejected from
laser-heated region must be neutralized by some return
rent and therefore the Poisson equation is suitable for
area in order to accurately calculate the virtual cathode.

In the high-density layer, however, the motion becom
fluidlike in a time-averaged sense and, as a result, fluid
motion becomes important there. Oscillations related to
Debye length are not important but the collision process is
the plasma oscillation must be accurately solved in this
gion, the spatial grid size must be smaller than the De
length and we will not be able to use a large system suffic
for resolving thermal transport. Therefore, Maxwell’s equ
tions used to calculate the electric field on average via m
roscopic value are suitable in this area. For this reason,
solved electric field separately in the two regions by t
methods. Therefore, the electric fields are connected as

E5Epoi•~12e21/n2
!1Emax•e21/n2

,

whereEpoi represents the electric field solved by the Poiss
equation“•Epoi5q and Emax by the Maxwell equation
]Emax/]t5J.

Figure 4 shows the electron motion inx2ux phase space
at the time of~a! 50, ~b! 75, and~c! 100 vp

21 after laser
irradiation which lasted 4pvp

21 . Although we did not use
particles for the calculation, we here employed virtual p
ticles only for the purpose of visualization of the phase t
jectories of the particles. These particles were initially plac
at an arbitrary position in velocity space. Then we calcula
how it moved under the influence of the calculated elec
field with a leapfrog scheme by the equations

dup~ t !/dt5E„xp~ t !,t…, ~22!

dxp~ t !/dt5up~ t !, ~23!

whereE„xp(t),t… is estimated at the particle location by lin
ear interpolation from the values on the nearby grid poin
The number of particles used here is 2040.

Figure 4 is only a part of the whole system. The negat
velocity part of the electron distribution is moving towar
the high-density side, while positive velocity part is movin
towards the low-density side from the surface. In Fig. 4~a!,
the electrons in the heated region are accelerated and m
out far away from the surface at the beginning. Next, el
trons in the low-velocity region gradually perform circul
motion near the heated surface. This is confirmed in F
4~b! and 4~c!, where particles initially having positive veloc
ties changed their direction to negative velocity atx50
;20lD . This structure is maintained up to the end of t
calculation atvpt5100. Thus the electrons streaming in
vacuum are reflected back to the high-density region by
virtual cathode formed there, and contribute to the heat
in the high-density region.
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Open circles and the solid line in Figs. 5~a! and 5~b! show
the temperature and heat-flux distributions atvpt550,100,
respectively. The relation between heat flux~normalized by
the local free streaming fluxQf re5nvTT) and temperature
gradient ~normalized by the collision mean free pathl f re
estimated at each local point ofx) at vpt550 ~c!, 100~d! are
plotted in Fig. 5 and compared with the theoretical cur
based on the Spitzer-Ha¨rm ~S-H! theory q52k“T @14#.
The calculated heat flux in the high-density region rema
along the theoretical curve~solid line!, whereas it departs
seriously on the vacuum side.

Even atvpt550 in Fig. 5~c!, the flux in the high-density
region already reached the S-H theory while it is not yet
steady state in the low-density region. It is important to n
that such a classical Fourier law is quickly established. I
interesting to note that this behavior is different from t
result in the preceding section. In such a nonlocal heat fl
the heat flux is always detached from the classical law a
Fig. 3. We have not yet come to a conclusion to explain t
difference but the virtual cathode and returning electro
may play some role in establishing the classical Fourier l

In order to show the effect of the virtual cathode, w
performed another simulation in which self-consistent el
tric fields are not used to accelerate the electrons but only

FIG. 4. Electron trajectories inx2ux phase space atvpt5 ~a!
50, ~b! 75, and~c! 100. Density profile is shown by the solid line i
~a! .
8-5
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KONDOH et al. PHYSICAL REVIEW E 68, 066408 ~2003!
laser field is imposed. Figure 6 shows the comparison
trajectories of electrons inx2ux phase space atvpt550
with and without self-consistent fields. Compared with F
6~b!, electrons in Fig. 6~a! are relatively confined in the re
gion where the laser field was imposed because of the
induced electric field. If this field is absent, a shocklike stru
ture propagates with constant velocity in the entire veloc
space of the electrons because electrons are moving
initially accelerated velocities.

Figure 7 shows the electric field distribution in the sam
case as in Fig. 6. The initial laser is imposed asE
5E0sin(vt) ~added in the regionx50;217). The influ-
ence of the self-consistent electric field can be seen in
7~a!. For x.0 there exists a region withE.0 which pulls

FIG. 5. Temperature~open circles! and heat-flux~solid line!
distribution atvpt5 ~a! 50, ~b! 100. Heat fluxQ vs inverse tem-
perature gradient atvpt550 ~c!, 100 ~d!. The theoretical curve
based on the Spitzer-Ha¨rm theory is plotted by the solid line. Log
base is 10.
06640
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back the electrons in the negative direction. ThisE.0 region
should have acted as a virtual cathode. Figure 7~b! is the
result without the self-consistent field but the electric fie
are calculated from the resultant space charge. A very la
electric field appeared because there is no self-consis
electric field to prevent charge separation.

Figure 8 shows the dependence of heat flux on the la
intensity Eex@5A sin(vt), ~a! A5E0/2, ~b! A5E0, ~c! A
52E0, and ~d! A53E0]. It is clear that the distance to
which heat is transported becomes longer by increasing
laser intensity although the initially heated region is t

FIG. 7. Electric field distribution for the same condition as
Fig. 6 atvpt550 ~a! with and ~b! without self-consistent electric
field.

FIG. 6. Electron trajectories inx2ux phase space atvpt550,
~a! with and ~b! without the self-consistent fields.
8-6
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MICROSCOPIC AND MACROSCOPIC SIMULATIONS FOR . . . PHYSICAL REVIEW E 68, 066408 ~2003!
same. This heat-penetration length is shown in Fig. 9
various laser fieldsEex , where ‘‘d/lD’’ is the length which is
estimated by the point whereQ524.1531023 which cor-
responds to the edge of the initial electric field in the case
Fig. 8~a!.

If this length is simply calculated from the distance th
electrons would move with velocity gained from the las
field , the distance should be proportional toAA but Fig. 9
shows somewhat different behavior.

Although the heat-penetration length increases with
creasing laser intensity, this tendency does not explain
experimental results as will be shown later in the followi
section@1#. In order to explain the experimental results, w
need a long time scale hydrodynamic simulations. The m
important conclusion drawn from this microscopic simu
tion is that the classical heat conduction is established e
at vpt;50 which is very short compared with the laser pu
duration in the actual system. This proves that the class
thermal conduction through the electron-collision interact
takes place much earlier than expected.

Figure 10 summarizes the results with the various la
intensities. We added another calculation result with the s
tial mesh size reduced by a factor of 4 forA5E0. The sys-
tem size is also reduced because the same number of m
is used. The S-H theory is shown by the solid line for co
parison. Because the denominator of heat flux in Fig. 10
free-streaming fluxQf re(5nvTT) estimated at each loca
position which becomes large in accordance with heat
that also increases in proportion tonvTT when laser field is

FIG. 8. The heat fluxQ as functions ofx at vpt5100 for vari-
ous laser fieldEex@5A sin(vt), ~a! A5E0/2, ~b! A5E0, ~c! A
52E0, and~d! A53E0].

FIG. 9. Heat penetration depth vs incident laser field. T
length is estimated by the pointQ524.1531023.
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increased. ThereforeQ/Qf re remains constant and show
unified behavior which does not depend on laser field. Mo
over, the calculation with reduced mesh size also agrees
the coarse mesh result and this confirms the accuracy o
present calculations.

V. MACROSCOPIC SIMULATION

From the results by microscopic simulations in the p
ceding section, the classical thermal conduction is shown
be quickly established. However, the calculation in the p
ceding section is not long enough to compare the abla
depth with the experiments. Thus we need a simulation w
a much longer time scale. Fortunately, we know at pres
that the classical thermal conduction is relevant for furth
simulation and hence we are able to perform the purely c
sical fluid dynamic simulation without any anomalies.

For this hydrodynamic simulation, we use the codePAR-

CIPHAL based on the CIP method applied to hydrodynam
equations. This code has been used for various types of l
processing on time scales of nanoseconds-milliseconds
has demonstrated its suitability in such calculations@6,15–
17#. This code includes thermal conduction, viscosity, t
equation of state, elastic-plastic processes, surface ten
and other physics.

At first, the simulation is applied to copper with a las
pulse of 150 fs and a wavelength of 780 nm by setting
absorption rate to 30%. The laser pulse intensity is set
Gaussian distribution in both space and time:

I 5I 0expF2S r

aD 2GexpF2S t

t D 2G ,
whereI 0 is the peak value of the laser intensity. The penet
tion of the laser is given by the skin depth as

l m5
1

4p
Alc

s
,s

FIG. 10. The heat flux vs gradient scale for the various la
field at vpt5100 (A5E0/2, E0 , 2E0,! and vpt550 (A53E0).
The calculation with fine mesh is added forA5E0 in which spatial
mesh size is reduced to 1/4, but the plot is atvpt550. The Spitzer-
Härm theory is shown by the solid line.
8-7
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wherel is the laser wave length,c the speed of light, ands
the electric conductivity. Therefore, the depthl m is about 5
nm for copper and is negligibly small compared with t
crater depth observed in experiments.

Figure 11 shows two examples of crater shapes given
the hydrodynamic simulation. The laser enters from
right-hand side of the figure and irradiates the copper sur
placed on the left-hand side. The laser energy in Fig. 11 is~a!
754 mJ and ~b! 251 mJ with the same laser-spot diamet
80 mm. In Fig. 11, the depth and diameter of the craters~the
ratio between the spatial scale height and width in the fig
is changed to 1:1.3443103 in order to clearly show the cra
ter depth! are about~a! 220 nm and 180mm, and~b! 110 nm
and 166mm, respectively, 10 ns after laser irradiation. T
crater stopped developing at this time. It is important to m
sure the size of the damaged area on the target surface
cause the size of the damaged area is used as a spot s
estimate the laser fluence in the two experiments given
Figs. 13 and 14@2,18#.

We have performed a number of simulations by chang
the fluence and spot size. Figure 12 shows the damage
for various laser-spot sizes and thus the damage size i
ways much larger than the laser-spot size. The error bar
resents the change caused by different fluence or laser en
with the same spot size. Although the damage size has b
widely believed to be the same as the laser-spot size u

FIG. 12. Calculation results of damage diameter for various
ser spot diameter, where the fluence is changed from 113
4 266 mJ/cm2. The error bar indicates the change for different fl
ence. For comparison, the dashed line, which represents the da
size equal to the laser spot, is drawn.

FIG. 11. The crater structure obtained by fluid simulation at
ns after laser irradiation. In the simulation, the laser spot diamet
80 mm and laser energy is~a! 754 mJ, ~b! 251 mJ. ~The size of
height and width in these figures is changed by 1:1.3343103 for
better visualization.!
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such an ultrashort-pulse laser, both differ significantly
shown in the figure. In the case of a laser-spot diamete
80 mm, for example, the damage size on the target surfac
150–180mm which is twice as large as the laser-spot si
Therefore we must be careful in analyzing the experimen
results if the fluence is estimated by the damage size as in
experiments of Refs.@2,18,19#.

In Fig. 13, ablation depth is plotted against the laser fl
ence. The open circles are simulation results in which
laser-spot diameter is fixed to 80mm but the fluence is esti
mated by the damage size for each simulation. The squ
are the experimental results and the dashed line is the s
lation result in which the fluence is estimated merely by
laser-spot size. As is expected from Fig. 12, a large diff
ence appears depending on the definition of the fluence
in Fig. 13, the hydrodynamic simulation with purely classic
thermal conduction and elastic processes can replicate
experimental results very well when the fluence is correc
estimated in the same way as the experiments.

These results can also be confirmed by another sim
experiment shown in Fig. 14@18#. The simulation is for sil-
ver with a 120-fs laser pulse and a wavelength of 780 nm
setting the absorption rate to 10%. If we correctly estim
the fluence in the same way as in Fig. 13, the simulat
agrees well with the experiment@18#.

-
to

age

FIG. 13. Ablation depth vs fluence. The open circles show
simulation results with 80mm laser-spot diameter for laser energ
from 20 mJ to 754mJ but the fluence was estimated by the dama
size in Fig. 12, while the dashed line is the simulation result e
mated by laser-spot size. The squares with error bar are the ex
mental results@2#.

FIG. 14. Ablation depth vs effective fluence. The circles sh
the simulation results with 60-mm laser-spot diameter for laser en
ergy from 31.4mJ to 502.6mJ but the fluence was estimated by th
damage size. The squares represent the experimental results@16#.
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VI. SUMMARY

We performed simulations to analyze experimental res
with a femtosecond laser both at microscopic and mac
scopic levels. We solved the Fokker-Planck equation us
the CIP method for analyzing the interaction between
short-pulse-laser and plasma in the microscopic range. H
the Fokker-Planck equation is solved directly with an Eu
rian grid in one-space and two-velocity space dimension

After the acceleration by the laser field, electrons are
flected back by a virtual cathode and contribute to the ene
transport process. By this effect, the thermal flux quic
reached the Fourier law form. Such behavior is differe
from the previous result on non-local heat flow.

It is important to note that the classical transport the
~S-H theory! is quickly established within a very short tim
scale of the order ofvpt550.
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Since the classical thermal conduction is realized
quickly, subsequent hydrodynamic calculation has been d
in a purely classical manner and compared with the exp
ments. The simulations have shown that the damage di
eter is much larger than the laser spot even in femtoseco
laser experiments. Thus the ablation depth dependenc
laser fluence was correctly replicated only when the sa
definition of the fluence was used both in experiments a
simulations.
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